Modeling the Direct Synthesis of Dimethyl Ether using Artificial Neural Networks
نویسندگان
چکیده
Artificial neural networks (ANNs) are designed and implemented to model the direct synthesis of dimethyl ether (DME) from syngas over a commercial catalyst system. The predictive power ANNs is assessed by comparison with predictions lumped parameterized fit same data used for ANN training. training converges much faster than parameter estimation model, show higher degree accuracy under all conditions. Furthermore, simulations that also accurate even at some conditions beyond validity range.
منابع مشابه
scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
Modeling and zoning of land subsidence in the southwest of Tehran using artificial neural networks
The earth's surface, due to its natural conditions and its structure is always changing and reshaping. One of the created deformations is the land subsidence. This is the most dangerous events which can be seen in most urban areas especially in the agricultural plains today. This study aims at zoning land subsidence and recognition of geometrical factors in southwest of Tehran. To estimate and ...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Obesity Modeling Using Artificial Neural Networks
Abstract: Artificial neural networks (ANNs) are non-linear mapping structures based on the function of the human brain. They have been shown to be universal and highly flexible function approximators for any data. A Neural Network is a computer program (series of instructions) that loosely behaves like a biological brain. Millions of neurons in the biological brain work together in parallel, ea...
متن کاملMonitoring of Regional Low-Flow Frequency Using Artificial Neural Networks
Ecosystem of arid and semiarid regions of the world, much of the country lies in the sensitive and fragile environment Canvases are that factors in the extinction and destruction are easily destroyed in this paper, artificial neural networks (ANNs) are introduced to obtain improved regional low-flow estimates at ungauged sites. A multilayer perceptron (MLP) network is used to identify the funct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chemie Ingenieur Technik
سال: 2021
ISSN: ['0009-286X', '1522-2640']
DOI: https://doi.org/10.1002/cite.202000226